Affiliation:
1. Department of Cardiology, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Abstract
Background:
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates low-density lipoprotein (LDL) homeostasis and plays a key role in acute coronary syndrome (ACS). The cardioprotective effect of PCSK9 inhibition extends beyond LDL cholesterol reduction, involving regulation of platelet function by not yet unraveled mechanisms. Oxidized-LDL (ox-LDL) is increased during ACS and induces platelet activation via binding to platelet surface. We will evaluate serum PCSK9 and its correlation with platelet reactivity and platelet-ox-LDL binding in Chinese ACS patients.
Method and design:
In this pilot cross-sectional study, we will enroll 115 Chinese participants aged 30 to 75 years with ACS. Blood sample will be obtained after the first maintenance dose of aspirin and clopidogrel during morning time. Serum PCSK9 will be measured by an enzyme-linked immunoadsorbent assay. Platelet reactivity will be assessed by; Platelet activation (P-selectin and GPIIbIIIa expression using flow cytometry) and; Platelet aggregation using light transmission aggregometry in response to various stimuli. On-treatment platelet reactivity is measured by adenosine diphosphate-induced platelet aggregation. Binding of ox-LDL to platelet will be evaluated by flow cytometry. Spearman correlations will be used to determine association of serum PCSK9 with platelet functional parameters and platelet-ox-LDL binding. Additionally, continuous PCSK9 levels will be categorized into tertiles of equal size to investigate its association with on-treatment platelet reactivity.
Discussion:
This study will reveal possible relationship between serum PCSK9 and platelet reactivity in the setting of ACS which may shed light on therapeutic potential in platelet inhibition by targeting PCSK9. The study will also explore the association of serum PCSK9 and platelet-ox-LDL binding, an important mechanism for platelet-LDL interplay, to provide mechanistic insight into PCSK9-mediated regulation of platelet reactivity.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献