A senescence-related signature for predicting the prognosis of breast cancer: A bioinformatics analysis

Author:

Xing Tengfei1ORCID,Hu Yiyi2,Wang Hongying1,Zou Qiang1

Affiliation:

1. Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China

2. Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.

Abstract

Breast cancer is a heterogeneous disease with diverse prognosis and treatment outcomes. Current gene signatures for prognostic prediction are limited to specific subtypes of breast cancer. Cellular senescence is a state of irreversible cell cycle arrest that affects various physiological and pathological processes. This study aimed to develop and validate a senescence-related signature for predicting the prognosis of breast cancer patients. We retrieved 744 senescence-associated genes from the SeneQuest database and analyzed their expression profiles in 2 large datasets of breast cancer patients: The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). We used univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analysis to derive a 29-gene senescence-related risk signature. The risk signature was significantly associated with disease-specific survival (DSS), clinical characteristics, molecular subtypes, and immune checkpoint genes expressions in both datasets. The risk signature also stratified high-risk and low-risk patients within the same clinical stage and molecular subtype. The risk signature was an independent prognostic factor for breast cancer patients. The senescence-related signature may be a useful biomarker for predicting prognosis and immunotherapy response of breast cancer patients. The risk signature may also guide adjuvant chemotherapy decisions, especially in hormone receptor positive (HR+) and human epidermal growth factor receptor type 2 (HER2)− subtypes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3