Machine-learning-based analysis of the sensitivity and specificity on lipid-lowering effect of one-month-administered statins

Author:

Liu Huiqin1,Jiao Ronghong2,Wang Lingling1,Feng Fei3,Zhao Xiaohui1,Yang Juan1ORCID

Affiliation:

1. Department of Neurology, Shanghai Pudong New Area People’s Hospital, Shanghai, China

2. Department of Clinical Laboratory, Shanghai Pudong New Area People’s Hospital, Shanghai, China

3. Department of Neurology, East Hospital Affiliated to Tongji University, Shanghai, China.

Abstract

Few predictive studies have been reported on the efficacy of atorvastatin in reducing lipoprotein cholesterol to be qualified after 1-month course of treatment in different individuals. A total of 14,180 community-based residents aged ≥ 65 received health checkup, 1013 of whom had low-density lipoprotein (LDL) higher than 2.6mmol/L so that they were put on 1-month course of treatment with atorvastatin. At its completion, lipoprotein cholesterol was measured again. With < 2.6 mmol/L considered as the treatment standard, 411 individuals were judged as the qualified group, and 602, and as the unqualified group. The basic sociodemographic features covered 57 items. The data were randomly divided into train sets and test ones. The recursive random-forest algorithm was applied to predicting the patients response to atorvastatin, the recursive feature elimination method, to screening all the physical indicators. The overall accuracy, sensitivity and specificity were calculated, respectively, and so were the receiver operator characteristic curve and the area under the curve of the test set. In the prediction model on the efficacy of 1-month treatment of statins for LDL, the sensitivity, 86.86%; and the specificity, 94.83%. In the prediction model on the efficacy of the same treatment for triglyceride, the sensitivity, 71.21%; and the specificity, 73.46%. As to the prediction of total cholesterol, the sensitivity, 94.38%; and the specificity, 96.55%. And in the case of high-density lipoprotein (HDL), the sensitivity, 84.86%; and the specificity, 100%. recursive feature elimination analysis showed that total cholesterol was the most important feature of atorvastatin efficacy of reducing LDL; that HDL was the most important one of its efficacies of reducing triglycerides; that LDL was the most important one of its efficacies of reducing total cholesterol; and that triglyceride was the most important one of its efficacies of reducing HDL. Random-forest can help predict whether atorvastatin efficacy of reducing lipoprotein cholesterol to be qualified after 1-month course of treatment in different individuals.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3