Comprehensive analysis of immune implication and prognostic value of DHX33 in sarcoma

Author:

Zhang Xinan1,Shao Yiming1ORCID,Zhou Yaqi1,Zhu Zhi1,Wang Xiaohu1ORCID

Affiliation:

1. Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China.

Abstract

DEAH-box helicase 33 (DHX33) is an RNA helicase that has been identified to promote the progression of a variety of cancers. However, the relationship between DHX33 and sarcoma remains unknown. RNA expression data with clinical information for the sarcoma project was collected from TCGA database. The association between the differential expression of DHX33 and the prognosis for sarcoma was assessed using survival analysis. CIBERSORT was used to evaluate the immune cell infiltration in sarcoma sample tissues. We then further investigated the association between DHX33 and tumor-infiltrating immune cells in sarcoma using the TIMER database. Finally, the immune/cancer-related signaling pathways involved in DHX33 were analyzed using gene set enrichment analysis. High DHX33 expression was discovered to be a poor prognostic indicator in TCGA-SARC. Immune subpopulations in the TCGA-SARC microenvironment are dramatically altered compared to normal tissues. The tumor immune estimation resource analysis revealed a strong correlation between the expression of DHX33 and the abundance of CD8+ T cells and dendritic cells. Changes in copy number also affected neutrophils, macrophages, and CD4+ T cells. According to gene set enrichment analysis, DHX33 may be involved in a number of cancer- and immune-related pathways, such as the JAK/STAT signaling pathway, P53 signaling pathway, chemokine signaling pathway, T cell receptor signaling pathway, complement and coagulation cascades, and cytokine-cytokine receptor interaction. Our study emphasized that DHX33 may be involved in the immune microenvironment of sarcoma and play an important role. As a result, it is possible that DHX33 might serve as an immunotherapeutic target for sarcoma.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3