Exploration of Fuzheng Yugan Mixture on COVID-19 based on network pharmacology and molecular docking

Author:

Jiang Xinyu1,Zhou Jie23,Yu Zhongming4,Gu Xueya4,Lu Ying5,Ruan Yanmin5,Wang Tianyue5ORCID

Affiliation:

1. The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China

2. Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China

3. Center for Medicinal Resources Research, Tongde Hospital of Zhejiang Province, Hangzhou, China

4. Central Preparation Room, Tongde Hospital of Zhejiang Province, Hangzhou, China

5. The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.

Abstract

After the World Health Organization declared coronavirus disease 2019 (COVID-19), as a global pandemic, global health workers have been facing an unprecedented and severe challenge. Currently, a mixturetion to inhibit the exacerbation of pulmonary inflammation caused by COVID-19, Fuzheng Yugan Mixture (FZYGM), has been approved for medical institution mixturetion notification. However, the mechanism of FZYGM remains poorly defined. This study aimed to elucidate the molecular and related physiological pathways of FZYGM as a potential therapeutic agent for COVID-19. Active molecules of FZYGM were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), while potential target genes of COVID-19 were identified by DrugBank and GeneCards. Compound-target networks and protein-protein interactions (PPI) were established by Cytoscape_v3.8.2 and String databases, respectively. The gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Finally, a more in-depth study was performed using molecular docking. Our study identified 7 active compounds and 3 corresponding core targets. The main potentially acting signaling pathways include the interleukin (IL)-17 signaling pathway, tumor necrosis factor (TNF) signaling pathway, Toll-like receptor signaling pathway, Th17 cell differentiation, and coronavirus disease-COVID-19. This study shows that FZYGM can exhibit anti-COVID-19 effects through multiple targets and pathways. Therefore, FZYGM can be considered a drug candidate for the treatment of COVID-19, and it provides good theoretical support for subsequent experiments and clinical applications of COVID-19.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3