Affiliation:
1. Second Clinical Medical College, Binzhou Medical University, Yantai, China
2. Department of General Surgery Center, Linyi People’s Hospital, Linyi, China.
Abstract
This study aimed to explore critical genes as potential biomarkers for the diagnosis and prognosis of colorectal cancer (CRC) for clinical utility. To identify and screen candidate genes involved in CRC carcinogenesis and disease progression, we downloaded microarray datasets GSE89076, GSE73360, and GSE32323 from the GEO database identified differentially expressed genes (DEGs), and performed a functional enrichment analysis. A protein-protein interaction network was constructed, and correlated module analysis was performed using STRING and Cytoscape. The Kaplan–Meier survival curve shows the survival of the hub genes. The expression of cyclin-dependent kinase (CDK1), cyclin B1 (CCNB1), and PCNA in tissues and changes in tumor grade were analyzed. A total of 329 DEGs were identified, including 264 upregulated and 65 downregulated genes. The functions and pathways of DEGs include the mitotic cell cycle, poly(A) RNA binding replication, ATP binding, DNA replication, ribosome biogenesis in eukaryotes, and RNA transport. Forty-seven Hub genes were identified, and biological process analysis showed that these genes were mainly enriched in cell cycle and DNA replication. Patients with mutations in CDK1, PCNA, and CCNB1 had poorer survival rates. CDK1, PCNA, and CCNB1 were significantly overexpressed in the tumor tissues. The expression of CDK1 and CCNB1 gradually decreased with increasing tumor grade. CDK1, CCNB1, and PCNA can be used as potential markers for the diagnosis and prognosis of CRC. These genes are overexpressed in colon cancer tissues and are associated with low survival rates in CRC patients.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献