Single-cell and bulk RNA sequencing reveal cancer-associated fibroblast heterogeneity and a prognostic signature in prostate cancer

Author:

Liu Wen12ORCID,Wang Miaomiao12,Wang Miao1,Liu Ming12

Affiliation:

1. Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China

2. Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.

Abstract

Cancer-associated fibroblasts (CAFs), the central players in the tumor microenvironment (TME), can promote tumor progression and metastasis via various functions. However, the properties of CAFs in prostate cancer (PCa) have not been fully assessed. Therefore, we aimed to examine the CAF characteristics in PCa and construct a CAF-derived signature to predict PCa prognosis. CAFs were identified using single-cell RNA sequencing (scRNA-seq) data from 3 studies. We performed the FindAllMarkers function to extract CAF marker genes and constructed a signature to predict the biochemical relapse-free survival (bRFS) of PCa in the Cancer Genome Atlas (TCGA) cohort. Subsequently, different algorithms were applied to reveal the differences of the TME, immune infiltration, treatment responses in the high- and low-risk groups. Additionally, the CAF heterogeneity was assessed in PCa, which were confirmed by the functional enrichment analysis, gene set enrichment analysis (GSEA), and AUCell method. The scRNA-seq analysis identified a CAF cluster with 783 cells and determined 183 CAF marker genes. Cell-cell communication revealed extensive interactions between fibroblasts and immune cells. A CAF-related prognostic model, containing 7 genes (ASPN, AEBP1, ALDH1A1, BGN, COL1A1, PAGE4 and RASD1), was developed to predict bRFS and validated by 4 independent bulk RNA-seq cohorts. Moreover, the high-risk group of the signature score connected with an immunosuppressive TME, such as a higher level of M2 macrophages and lower levels of plasma cells and CD8+ T cells, and a reduced reaction rate for immunotherapy compared with low-risk group. After re-clustering CAFs via unsupervised clustering, we revealed 3 biologically distinct CAF subsets, namely myofibroblast-like CAFs (myCAFs), immune and inflammatory CAFs (iCAFs) and antigen-presenting CAFs (apCAFs). In conclusion, the CAF-derived signature, the first of its kind, can effectively predict PCa prognosis and serve as an indicator for immunotherapy. Furthermore, our study identified 3 CAF subpopulations with distinct functions in PCa.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3