Mechanism of morusin on breast cancer via network pharmacology and in vitro experiments

Author:

Li Hangzhen1,Xiao Jianlei2,Li Xue3,Huang Qian4,Liu Qingfeng5,Zhang Qing67ORCID

Affiliation:

1. Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China

2. School of Nursing, Southwest Medical University, Luzhou, Sichuan, China

3. Deyang People’s Hospital, Deyang, Sichuan, China

4. Dazhou Vocational and Technical College, Dazhou, Sichuan, China

5. Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, Sichuan, China

6. Department of General Surgery (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China

7. Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), Luzhou, Sichuan, China.

Abstract

Background: This study aimed to investigate the therapeutic effect of morusin on breast cancer and decode its underlying molecular mechanism using network pharmacology and in vitro techniques. Methods: Swiss Target Prediction and PharMmapper were applied to screen morusin targets. The targets of human breast cancer were obtained from the GeneCards database, and the overlapping targets were screened. A protein-protein interaction network was constructed based on the overlapping targets by String and Cytoscape. Performed Gene Ontology enrichment as well as Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis on the shared targets of the drug and disease using the David database. Additionally, performed molecular docking using PyMoL and AutoDock software. Finally, the impact of morusin on breast cancer was demonstrated by cell experiments and western blot. Results: A total of 101 target genes were obtained through screening including ESR1, EGFR, ALB, CTNNB1, AKT1, and so on. Based on the annotation of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the anticancer properties of morusin are linked to apoptosis, migration, and PI3K-AKT signaling pathways. Molecular docking showed an interaction between morusin and PIK3CA, AKT1. In vitro data demonstrated that morusin causes apoptosis and inhibits cell migration. Morusin also increased the expression of cleaved-PARP while decreasing the expression of p-PI3K and p-AKT. Conclusion: Through network pharmacology analysis and in vitro experiments, this study showed that morusin promotes apoptosis and inhibits migration by modulating the PI3K-AKT axis. Morusin plays a key role in the treatment of breast cancer.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3