Affiliation:
1. Heilongjiang University of Traditional Chinese Medicine, Harbin, China
2. The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China.
Abstract
The objective was to explore the pharmacological mechanism of modified shengmaiyin (MSMY) in the treatment of acute lymphoblastic leukemia (ALL) by network pharmacology analysis. The effective components and predicted targets of MSMY were collected from TCMSP and Swiss target prediction databases, and the related targets of ALL were screened by GeneCards and DisGeNET. The core targets and related signaling pathways of MSMY active ingredients for the treatment of ALL were predicted by protein-protein interaction network (PPI), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis. We identified 172 potential targets for the active components of MSMY, 538 disease targets associated with ALL, and 59 common gene targets. PPI network showed that 27 targets such as triptolide, RAC-alpha serine/threonine-protein kinase (AKT1), vascular endothelial growth factor A and Caspase-3 (CASP3) were the core targets. KEGG enrichment analysis related signaling pathways included cancer pathway, phosphatidylinositol 3 kinase, PI-3K/protein kinase B (PI3K-Akt) signaling pathway, apoptosis and mitogen-activated protein kinase (MAPK) signaling pathway and IL-17 signaling pathway. The effective active components and potential therapeutic targets of MSMY in the treatment of ALL were initially identified by comprehensive network pharmacology, which provides a theoretical basis for further study of the material basis and molecular mechanism of MSMY in the treatment of ALL.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献