Role of neutrophil extracellular trap and immune infiltration in atherosclerotic plaque instability: Novel insight from bioinformatics analysis and machine learning

Author:

Hu Tingting1,Chen Xiaomin2ORCID

Affiliation:

1. Health Science Center, Ningbo University, Ningbo, China

2. Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China.

Abstract

The instability of atherosclerotic plaques increases the risk of acute coronary syndrome. Neutrophil extracellular traps (NETs), mesh-like complexes consisting of extracellular DNA adorned with various protein substances, have been recently discovered to play an essential role in atherosclerotic plaque formation and development. This study aimed to investigate novel diagnostic biomarkers that can identify unstable plaques for early distinction and prevention of plaque erosion or disruption. Differential expression analysis was used to identify the differentially expressed NET-related genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed. We filtered the characteristic genes using machine learning and estimated diagnostic efficacy using receiver operating characteristic curves. Immune infiltration was detected using single-sample gene set enrichment analysis and the biological signaling pathways involved in characteristic genes utilizing gene set enrichment analysis were explored. Finally, miRNAs- and transcription factors-target genes networks were established. We identified 8 differentially expressed NET-related genes primarily involved in immune-related pathways. Four were identified as capable of distinguishing unstable plaques. More immune cells infiltrated unstable plaques than stable plaques, and these cells were predominantly positively related to characteristic genes. These 4 diagnostic genes are involved in immune responses and the modulation of smooth muscle contractility. Several miRNAs and transcription factors were predicted as upstream regulatory factors, providing further information on the identification and prevention of atherosclerotic plaques rupture. We identified several promising NET-related genes (AQP9, C5AR1, FPR3, and SIGLEC9) and immune cell subsets that may identify unstable atherosclerotic plaques at an early stage and prevent various complications of plaque disruption.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3