Molecular mechanism of oroxyli semen against triple-negative breast cancer verified by bioinformatics and in vitro experiments

Author:

Chen Lulu1,Yang Aishen2,Li Yangan3,Liu Xin4,Jiang Wei5,Hu Kehui3ORCID

Affiliation:

1. Clinical Laboratory of Zigong First People’s Hospital, Sichuan, China

2. Department of Rehabilitation, Chishui People’s Hospital, Zunyi, China

3. Department of Rehabilitation, Suining Central Hospital, Suining, China

4. Daping Hospital, Army Medical University, Chongqing, China

5. Department of Rehabilitation, Southwest Medical University, Sichuan, China.

Abstract

Objective: This study aimed to use network pharmacology to predict the therapeutic mechanism of oroxyli semen (OS) on triple-negative breast cancer (TNBC) and validate it through in vitro experiments. Methods: The active ingredients and target proteins of OS were retrieved from the Traditional Chinese Medicine Systems Pharmacology database, and the TNBC-related target genes were obtained from the GeneCards database. The overlapping genes were used to construct a protein–protein interaction (PPI) network via the String database. Furthermore, we employed an online bioinformatics analysis platform (https://www.bioinformatics.com.cn/) to perform gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses to evaluate biological processes, molecular functions, and cellular components and generate simulated signal pathways. Additionally, molecular docking was used to evaluate the binding ability of small molecule drugs and signaling pathway targets. CCK8 assay was conducted to detect the effect of small molecule drugs on TNBC cell viability, and Western Blot was utilized to verify the expression of AKT, VEGF, and hypoxia-inducible factor 1-alpha (HIF-1α) proteins. Results: Fifteen active ingredients and 166 therapeutic targets of OS were obtained from the Traditional Chinese Medicine Systems Pharmacology database. The Venn diagram revealed that 163 targets were related to TNBC. The protein–protein interaction network analysis identified AKT1, IL-6, JUN, vascular endothelial growth factor A (VEGFA), CASP3, and HIF-1α as potential core targets through which OS may treat TNBC. Furthermore, the molecular docking results indicated that the active ingredient chryseriol in OS had good binding ability with VEGFA, and HIF-1α. CCK8 assay results indicated that chryseriol inhibited the viability of MDA-MB-231 and BT-20 cells. Western Blot demonstrated that chryseriol intervention led to a decrease in VEGFA, and HIF-1α protein expression compared with the control group (P < .05), increased the cleaved PARP. Conclusion: OS may exert its therapeutic effects on TNBC through multiple cellular signaling pathways. Chryseriol, the active component of OS, can enhance the apoptosis of TNBC cells by targeting VEGFA/HIF-1α pathway. This study provided new insights into the potential therapeutic mechanism of OS for TNBC and may aid in the development of novel therapeutic approaches for TNBC.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3