Epithelial-mesenchymal transition-related gene signature for prognosis of lung squamous cell carcinoma

Author:

Yu Hongmin1,Dai Changxing2,Li Jie1,Zhang Xiangning1ORCID

Affiliation:

1. Department of Respiratory and Critical Care Medicine, Frist Hospital of Qinhuangdao, Hebei, China

2. Otolaryngology Department, Qinhuangdao Haigang Hospital, Qinghuangdao, Hebei, China.

Abstract

Epithelial-mesenchymal transition (EMT) is associated with tumor invasion and progression, and is regulated by DNA methylation. A prognostic signature of lung squamous cell carcinoma (LUSC) with EMT-related gene data has not yet been established. In our study, we constructed a co-expression network using differentially expressed genes (DEGs) obtained from The Cancer Genome Atlas (TCGA) to identify hub genes. We conducted a correlation analysis between the differentially methylated hub genes and differentially expressed EMT-related genes to screen EMT-related differentially methylated genes (ERDMGs). Functional enrichment was performed to annotate the ERDMGs. The least absolute shrinkage and selection operator (LASSO) and stepwise Cox regression analyses were performed to build a survival prognosis prediction model. Additionally, druggability analysis was performed to predict the potential drug targets of ERDMGs. We screened 11 ERDMGs that were enriched in cell adhesion molecules and other signaling pathways. Finally, we constructed a 4-ERDMG model, which showed good ability to predict survival prognosis in the training and validation sets. The model could serve as an independent predictive factor for patients with LUSC. Additionally, our druggability analysis predicted that CC chemokine ligand 23 (CCL23) and Hepatocyte nuclear factor 1b (HNF1B) may be the underlying drug targets of LUSC. We established a new risk score (RS) system as a prognostic indicator to predict the outcome of patients with LUSC, which will help in the improvement of treatment strategies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3