Identification of key genes and their correlation with immune infiltration in osteoarthritis using integrative bioinformatics approaches and machine-learning strategies

Author:

Xia Duo1ORCID,Wang Jing2,Yang Shu2,Jiang Cancai1,Yao Jun1

Affiliation:

1. Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China

2. Joint Surgery and Sport Medicine Department, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, People’s Republic of China.

Abstract

Osteoarthritis (OA) is a common degenerative joint disease and is closely associated with chronic, low-grade inflammation. Regulating ferroptosis by targeting ferroptosis-related genes may be a fast and effective way to delay the degeneration of OA. However, the molecular mechanisms and gene targets related to ferroptosis in OA are still unclear. Data of OA samples from 3 gene expression omnibus (GEO) datasets were combined to identify differentially expressed genes (DEGs). Ferroptosis-related genes (FRGs) retrieved by the Ferroptosis database were intersected with DEGs, and the intersected hub genes were used for functional enrichment analysis. The feature genes were obtained from the least absolute shrinkage and selection operator (LASSO) algorithm, support vector machine recursive feature elimination (SVM-RFE) algorithm, and random forest (RF) algorithm. Single sample gene set enrichment analysis (ssGSEA) was used to compare immune infiltration between OA patients and normal controls, and the correlation between feature genes and immune cells was analyzed. The expression levels of feature genes were confirmed by RT-PCR. In addition, to explore the applicability of these genes, we extended the bioinformatics analysis of these feature genes to cancer. Finally, 4 feature genes, GABARAPL1, TNFAIP3, ARNTL, and JUN, were confirmed in OA. Theirs expression level were validated by RT-PCR. ROC curves of the 4 genes exhibit excellent diagnostic efficiency for OA, suggesting that the 4 genes were associated with the pathogenesis of OA. Another GEO dataset validated this result. Further analysis revealed that the 4 feature genes were all closely related to the immune infiltration cells in OA. Additionally, results of prognosis analysis indicated that JUN might be a promising therapeutic target for cancer. GABARAPL1, TNFAIP3, ARNTL, and JUN may be predicted biomarkers for OA. The feature genes and association between feature genes and immune infiltration may provide potential biomarkers for OA prediction along with the better assessment of the disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3