Impact of multi-heavy metal exposure on renal damage indicators in Korea: An analysis using Bayesian Kernel Machine Regression

Author:

Choi Sun-Haeng12,Choi Kyung Hi3,Won Jong-Uk2,Kim Heon13ORCID

Affiliation:

1. Department of Occupational and Environmental Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea

2. Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea

3. Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.

Abstract

Exposure to cadmium (Cd), arsenic (As), and mercury (Hg) is associated with renal tubular damage. People living near refineries are often exposed to multiple heavy metals at high concentrations. This cross-sectional study investigated the association between combined urinary Cd, As, and Hg levels and renal damage markers in 871 residents living near the Janghang refinery plant and in a control area. Urinary Cd, As, Hg, N-acetyl-β-D-glucosaminidase (NAG), and β2-microglobulin (β2-MG) levels were measured. The combined effects of Cd, As, and Hg on renal tubular damage markers were assessed using linear regression and a Bayesian Kernel Machine Regression (BKMR) model. The results of the BKMR model were compared using a stratified analysis of the exposure and control groups. While the linear regression showed that only Cd concentration was significantly associated with urinary NAG levels (β = 0.447, P value < .05), the BKMR model showed that Cd and Hg levels were also significantly associated with urinary NAG levels. The combined effect of the 3 heavy metals on urinary NAG levels was significant and stronger in the exposure group than in the control group. However, no relationship was observed between the exposure concentrations of the 3 heavy metals and urinary β2-MG levels. The results suggest that the BKMR model can be used to assess the health effects of heavy-metal exposure on vulnerable residents.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3