Screening potential treatments for mpox from Traditional Chinese Medicine by using a data-driven approach

Author:

Li Linyang1,Xu Chengchen1,Guo Yinling1,Wang Haozhong1ORCID

Affiliation:

1. College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

Abstract

Mpox (MPX) has escalated into a public health emergency of international concern, necessitating urgent prophylactic and therapeutic measures. The primary goal of this investigation was to systematically extract Wan Quan’s expertise in treating smallpox, as documented in Exclusive Methods for Treating Pox (Dou Zhen Xin Fa in Chinese), with the aim of identifying potential prescriptions, herbs, and components for alternative MPX therapies or drugs. This research utilized data mining to identify high-frequency Chinese Medicines (CMs), high-frequency CM-pairs, and CM compatibility rules. Network pharmacology, molecular docking, and molecular dynamic simulation were employed to reveal the potential molecular mechanisms of the core CM-pair. 119 prescriptions were extracted from Exclusive Methods for Treating Pox. We identified 25 high-frequency CMs and 23 high-frequency CM pairs among these prescriptions. Combined association rule mining analysis, Gancao (Glycyrrhiza uralensis Fisch.), Renshen (Panax ginseng C. A. Mey.), Danggui (Angelica sinensis (Oliv.) Diels), Shengma (Cimicifuga foetida L.), and Zicao (Lithospermum erythrorhizon Siebold & Zucc.) were selected as the core CM-pair for further investigation. Network pharmacology analysis yielded 131 active components and 348 candidate targets for the core CM-pair. Quercetin and celabenzine were chosen as ligands for molecular docking. GO and KEGG enrichment analyses revealed that the core CM-pair could interact with targets involved in immune, inflammatory, and infectious diseases. Moreover, key mpox virus targets, F8-A22-E4 DNA polymerase holoenzyme and profilin-like protein A42R, were docked well with the selected core components. And molecular dynamic simulation indicated that the component (quercetin) could stably bind to the target (profilin-like protein A42R). Our findings identified potential prescriptions, herbs, and components that can offer potential therapies or drugs for addressing the MPX epidemic.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3