Based on network pharmacology and molecular docking to explore the molecular mechanism of Ginseng and Astragalus decoction against postmenopausal osteoporosis

Author:

Fan Wei12,Jiang Zong-Zhe345,Wan Sheng-Rong346ORCID

Affiliation:

1. Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China

2. Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, China

3. Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, China

4. Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China

5. Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China

6. Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.

Abstract

Traditional Chinese medicine suggests that Ginseng and Astragalus Decoction (GAD) may effectively treat postmenopausal osteoporosis (PMO). However, the exact mechanism of action for GAD remains unclear. This study aims to utilize network pharmacology and molecular docking technology to explore the potential mechanism of GAD in treating PMO. The main chemical components of GAD were identified by consulting literature and traditional Chinese medicine systems pharmacology database. GeneCards and online mendelian inheritance in man were used to identify PMO disease targets, and Cytoscape 3.8.2 software was used to construct a herb-disease-gene-target network. The intersection of drug targets and disease targets was introduced into the search tool for the retrieval of interacting genes platform to construct a protein-protein interaction network. Additionally, we further conducted gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses, followed by molecular docking between active ingredients and core protein targets. We have identified 59 potential targets related to the treatment of PMO by GAD, along with 33 effective components. Quercetin and kaempferol are the compounds with higher degree. In the protein-protein interaction network, IL6, AKT1, and IL1B are proteins with high degree. The enrichment analysis of gene ontology and KEEG revealed that biological processes involved in treating PMO with GAD mainly include response to hormones, positive regulation of phosphorylation, and regulation of protein homodimerization activity. The signal pathways primarily include Pathways in cancer, PI3K-Akt signaling pathway, and AGE-RAGE signaling pathway. Molecular docking results indicate that kaempferol and quercetin have a high affinity for IL6, AKT1, and IL1B. Our research predicts that IL6, AKT1, and IL1B are highly likely to be potential targets for treating PMO with GAD. PI3K/AKT pathway and AGE-ARGE pathway may play an important role in PMO.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3