Molecular basis of breast cancer with comorbid depression and the mechanistic insights of Xiaoyaosan in treating breast cancer-associated depression

Author:

Chen Gang1ORCID

Affiliation:

1. Department of Breast Surgery, Hangzhou Fuyang Women and Children Hospital, Hangzhou, China.

Abstract

Depression and breast cancer (BC) have been found to have a shared genetic basis, multiple loci of effect, and a presumed causal relationship. The treatment of BC combined with depression poses significant challenges. This study aims to use bioinformatics and network pharmacology to explore the molecular basis of BC combined with depression and to elucidate the potential mechanisms of Xiaoyaosan (XYS) in treating this disease. The molecular background of BC complicated with depression was discovered via data mining and bioinformatics. The molecular mechanism of XYS in the treatment of BC with depression was investigated by network pharmacology. The binding affinity between targets and active compounds was evaluated by molecular docking. The impact of XYS on the gene and protein expression of matrix metallopeptidase 9 (MMP9) in microglial cells was assessed using RT-quantitative PCR and western blot analysis, respectively. Differential expression analysis was conducted to identify genes associated with BC, revealing that 2958 genes were involved, with 277 of these genes also being related to depression. XYS was found to contain 173 active compounds and 342 targets, with 44 of these targets being involved in regulating the progression of BC and depression. Enrichment analysis was performed to identify pathways associated with these targets, revealing that they were related to cell proliferation, catalytic activity, cell communication, and interleukin-18 signaling and LXR/RXR activation. Network analysis was conducted to identify key targets of Xiaoyaosan in treating BC combined with depression, with EGF, interleukin 6, epidermal growth factor receptor, and peroxisome proliferator activated receptor gamma being identified as important targets. Molecular docking was also performed to assess the binding affinity between key targets and active compounds, with puerarin showing the strongest affinity for MMP9. In microglial cells, XYS significantly enhances the gene and protein expression of MMP9. This study elucidated the pharmacological mechanism of co-treatment for BC patients complicated with depression and the pharmacological mechanism of XYS against BC plus depression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3