Comparison with gastric cancer-associated genes reveals the role of ferroptosis-related genes in eosinophils of asthma patients: A bioinformatic study

Author:

Niu Jianfei1,Guo Wei1,Lu Aiyangzi2,Han Guanxiong1,Wang Guanqun1,Peng Bihui1,Zhao Jiping1ORCID

Affiliation:

1. Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China

2. Hebei University of Chinese Medicine, Shijiazhuang, China.

Abstract

Ferroptosis-inducing agents (FIAs) induced lipid-peroxidation-independent ferroptosis in eosinophils, thus ameliorating airway inflammation in asthmatic mice. Differences in ferroptosis-related genes (FerrGs) between eosinophils and cells in which FIAs induce canonical ferroptosis are supposed to contribute to this noncanonical ferroptosis but remain unclear. This study aims to explore these differences. This study used gastric cancer cells (GCCs) in stomach adenocarcinoma as the representative of cells in which FIAs induce canonical ferroptosis. FerrGs in Ferroptosis Database V2 respectively intersected with differentially expressed genes (DEGs) of eosinophils (E-MTAB-4660 dataset) and GCCs (GEPIA2 Stomach adenocarcinoma dataset) to obtain original ferroptosis DEGs (FerrDEGs). Then, they were subjected to Venn analysis to identify FerrDEGs shared by them and FerrDEGs exclusively expressed in eosinophils or GCCs. Identified genes were subjected to functional enrichment analysis, protein-protein interactions analysis, Hub genes analysis, and construction of the LncRNA-mediated ceRNA network. Sixty-six original FerrDEGs in eosinophils and 110 original FerrDEGs in GCCs were obtained. Venn analysis identified that eosinophils and GCCs shared 19 FerrDEGs that presented opposite expression directions and were involved in the ferroptosis pathway. Four upregulated and 20 downregulated FerrDEGs were exclusively expressed in eosinophils and GCCs, respectively. The former were enriched only in glycerolipid metabolism, while the latter were not enriched in pathways. Forty downregulated and 68 upregulated FerrDEGs were solely expressed in eosinophils and GCCs, respectively. The former was associated with the FoxO signaling pathway; the latter was related to glutathione metabolism and they were all implicated in autophagy. PPI analysis shows that the top 10 Hub genes of 66 original FerrDEGs and 44 exclusive FerrDEGs in eosinophils shared 9 genes (STAT3, NFE2L2, MAPK8, PTEN, MAPK3, TLR4, SIRT1, BECN1, and PTGS2) and they were also involved in the FoxO signaling pathway and autophagy pathway. Among them, PTEN is involved in forming a ceRNA network containing 3 LncRNAs, 3 miRNAs and 3 mRNAs. In contrast to FerrGs in cells in which FIAs induce canonical ferroptosis, the FerrGs in eosinophils differ in expression and in the regulation of ferroptosis, FoxO signaling pathway, and autophagy. It lays the groundwork for targeted induction of eosinophils lipid-peroxidation-independent ferroptosis in asthma.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3