Affiliation:
1. Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
2. AI Center, Korea University College of Medicine, Seoul, Republic of Korea
3. Korea University School of Mechanical Engineering, Seoul, Republic of Korea
4. Department of Obstetrics & Gynecology, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
Abstract
This study uses machine learning and population data to analyze major determinants of blood transfusion among patients with hip arthroplasty. Retrospective cohort data came from Korea National Health Insurance Service claims data for 19,110 patients aged 65 years or more with hip arthroplasty in 2019. The dependent variable was blood transfusion (yes vs no) in 2019 and its 31 predictors were included. Random forest variable importance and Shapley Additive Explanations were used for identifying major predictors and the directions of their associations with blood transfusion. The random forest registered the area under the curve of 73.6%. Based on random forest variable importance, the top-10 predictors were anemia (0.25), tranexamic acid (0.17), age (0.16), socioeconomic status (0.05), spinal anesthesia (0.05), general anesthesia (0.04), sex (female) (0.04), dementia (0.03), iron (0.02), and congestive heart failure (0.02). These predictors were followed by their top-20 counterparts including cardiovascular disease, statin, chronic obstructive pulmonary disease, diabetes mellitus, chronic kidney disease, peripheral vascular disease, liver disease, solid tumor, myocardial infarction and hypertension. In terms of max Shapley Additive Explanations values, these associations were positive, e.g., anemia (0.09), tranexamic acid (0.07), age (0.09), socioeconomic status (0.05), spinal anesthesia (0.05), general anesthesia (0.04), sex (female) (0.02), dementia (0.03), iron (0.04), and congestive heart failure (0.03). For example, the inclusion of anemia, age, tranexamic acid or spinal anesthesia into the random forest will increase the probability of blood transfusion among patients with hip arthroplasty by 9%, 7%, 9% or 5%. Machine learning is an effective prediction model for blood transfusion among patients with hip arthroplasty. The high-risk group with anemia, age and comorbid conditions need to be treated with tranexamic acid, iron and/or other appropriate interventions.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献