Identification of hub genes and drug candidates for NF2-related vestibular schwannoma by bioinformatics tools

Author:

Yuan Jiasheng1,Fu Yanpeng1,Liu Yuehui1ORCID

Affiliation:

1. Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Abstract

Neurofibromatosis type 2 (NF2)-related vestibular schwannoma (NF2-VS) is a rare genetic disorder that results in bilateral acoustic neuromas. However, the exact pathogenesis of the disease is still unclear. This study aims to use bioinformatics analyses to identify potential hub genes and therapeutic. We retrieved the mRNA expression profiles (GSE108524 and GSE141801) of NF2-VS from the database, and selected the leading 25% genes with the most variance across samples for weighted correlation network analysis. Subsequently, we conducted gene ontology term and Kyoto Encyclopedia of Genes and Genomes signaling network enrichment analyses. The STRING database was employed for protein-protein interaction (PPI) axis construction. The mRNA-miRNA modulatory network was generated via the miRTarBase database. Differentially expressed genes (DEGs) were identified via the R package “limma” in both datasets, and hub genes were screened via intersection of common DEGs, candidate hub genes from the PPI axis, and candidate hub genes from the key module. Finally, common DEGs were uploaded onto the connectivity map database to determine drug candidates. Based on our observations, the blue module exhibited the most significant relation to NF2-VS, and it included the NF2 gene. Using enrichment analysis, we demonstrated that the blue modules were intricately linked to modulations of cell proliferation, migration, adhesion, junction, and actin skeleton. Overall, 356 common DEGs were screened in both datasets, and 33 genes carrying a degree > 15 were chosen as candidate hub genes in the PPI axis. Subsequently, 4 genes, namely, GLUL, CAV1, MYH11, and CCND1 were recognized as real hub genes. In addition, 10 drugs with enrichment scores < −0.7 were identified as drug candidates. Our conclusions offered a novel insight into the potential underlying mechanisms behind NF2-VS. These findings may facilitate the identification of novel therapeutic targets in the future.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3