Mechanisms underlying the therapeutic effects of Xiaoyaosan in treating hyperplasia of mammary glands based on network pharmacology

Author:

Li Peizhe1ORCID,Tai Yuxing1,Zhang Long1,Wang Sixian1,Guan Qifan1,Li Xin1,Liu Shaowei2,Liu Mingjun1ORCID

Affiliation:

1. Department of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin Province, China

2. Department of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China.

Abstract

This study utilized network pharmacology to investigate the effects of Xiaoyaosan (XYS) on the intervention of hyperplasia of mammary glands (HMG) by targeting specific genes and signaling pathways. The active ingredients and targets of XYS, which consisted of 8 traditional Chinese medicines (TCM), were identified using TCMSP. The gene targets associated with HMG were obtained from the GeneCards Database, and the intersection data between the 2 was integrated. Cytoscape 3.8.1 software was used to construct a network diagram illustrating the relationship between compounds, drug active ingredients, target proteins, and the disease. The protein-protein interaction network diagram was generated using STRING, and the core targets were analyzed. A total of 133 active ingredients in XYS and 7662 active ingredient targets were identified. Among them, 6088 targets were related to HMG, and 542 were common targets between the active ingredients and the disease. The protein-protein interaction (PPI) core network contained 15 targets, with 5 key targets playing a crucial role. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses have indicated that XYS has the potential to treat HMG by interfering with the AGE-RAGE signaling pathway in diabetic complications, the MAPK signaling pathway, and the PI3K-Akt signaling pathway. Additionally, molecular docking studies have shown excellent binding properties between the drug components and key targets. Thus, this study provides a theoretical foundation for a better understanding of the pharmacological mechanism and clinical application of XYS in the comprehensive treatment of HMG.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3