Fgf2 and Ptpn11 play a role in cerebral injury caused by sevoflurane anesthesia

Author:

Zhang Lin1ORCID,Xu Lingyan2

Affiliation:

1. Department of Anesthesiology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China

2. Department of Disease Control and Prevention, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China.

Abstract

Sevoflurane is a new inhaled anesthetic, which has better physical properties than the existing inhalational anesthetics, rapid induction, less tissue uptake, and faster recovery. Sevoflurane can directly dilators cerebral blood vessels and increase cerebral blood flow, but it also reduces cerebral oxygen metabolism rate, thereby reducing cerebral blood flow. However, the role of Fgf2 and Ptpn11 in cerebral injury caused by sevoflurane anesthesia remains unclear. The sevoflurane anesthesia brain tissue datasets GSE139220 and GSE141242 were downloaded from gene expression omnibus (GEO). Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. Construction and analysis of protein-protein interaction (PPI) Network. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG), comparative toxicogenomics database (CTD) were performed. A heat map of gene expression was drawn. TargetScan was used to screen miRNAs regulating DEGs. 500 DEGs were identified. According to GO, in Biological Process analysis, they were mainly enriched in response to hypoxia, blood vessel development, inner ear development, neural tube closure, and aging. In Cellular Component (CC), they were mainly enriched in plasma membrane, integral component of membrane, and basal lamina. In Molecular Function (MF), they were mainly associated with protein binding, Wnt-activated receptor activity, and organic anion transmembrane transporter activity. In the KEGG analysis, they were mainly enriched in proteoglycans in cancer, pathways in cancer, transcriptional misregulation in cancer, basal cell carcinoma, thyroid hormone signaling pathway. In the Metascape enrichment analysis, the GO enrichment items revealed upregulated regulation of vascular endothelial cell proliferation, platelet-derived growth factor receptor signaling pathway, inner ear development, and response to hypoxia. A total of 20 modules were generated. Gene Expression Heatmap showed that the core genes (Fgf2, Pdgfra, Ptpn11, Slc2a1) were highly expressed in sevoflurane anesthesia brain tissue samples. CTD Analysis showed that the 4 core genes (Fgf2, Pdgfra, Ptpn11, Slc2a1) were associated with neurodegenerative diseases, brain injuries, memory disorders, cognitive disorders, neurotoxicity, drug-induced abnormalities, neurological disorders, developmental disorders, and intellectual disabilities. Fgf2 and Ptpn11 are highly expressed in brain tissue after sevoflurane anesthesia, higher the expression level of Fgf2 and Ptpn11, worse the prognosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3