Machine-learning-algorithms-based diagnostic model for influenza A in children

Author:

Zeng Qian12,Yang Chun12,Li Yurong12,Geng Xinran3,Lv Xin12

Affiliation:

1. Clinical Laboratory, Children’s Hospital Affiliated to Shandong University, Jinan, China

2. Clinical Laboratory, Jinan Children’s Hospital, Jinan, China

3. Maternity & Child Care Center of Dezhou, China.

Abstract

Background: At present, nucleic acid testing is the gold standard for diagnosing influenza A, however, this method is expensive, time-consuming, and unsuitable for promotion and use in grassroots hospitals. This study aimed to establish a diagnostic model that could accurately, quickly, and simply distinguish between influenza A and influenza like diseases. Methods: Patients with influenza-like symptoms were recruited between December 2019 and August 2023 at the Children’s Hospital Affiliated to Shandong University and basic information, nasopharyngeal swab and blood routine test data were included. Computer algorithms including random forest, GBDT, XGBoost and logistic regression (LR) were used to create the diagnostic model, and their performance was evaluated using the validation data sets. Results: A total of 4188 children with influenza-like symptoms were enrolled, of which 1992 were nucleic acid test positive and 2196 were matched negative. The diagnostic models based on the random forest, GBDT, XGBoost and logistic regression algorithms had AUC values of 0.835,0.872,0.867 and 0.784, respectively. The top 5 important features were lymphocyte (LYM) count, age, serum amyloid A (SAA), white blood cells (WBC) count and platelet-to-lymphocyte ratio (PLR). GBDT model had the best performance, the sensitivity and specificity were 77.23% and 80.29%, respectively. Conclusions: A computer algorithm diagnosis model of influenza A in children based on blood routine test data was established, which could identify children with influenza A more accurately in the early stage, and was easy to popularize.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3