Transcriptomic analysis of mRNAs in human whole blood identified age-specific changes in healthy individuals

Author:

Zhang Yan1,Liu Chonghui2ORCID

Affiliation:

1. Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China

2. College of Life Science, Northeast Forestry University, Harbin, China.

Abstract

Older age is one of the most important shared risk factors for multiple chronic diseases, increasing the medical burden to contemporary societies. Current research focuses on identifying aging biomarkers to predict aging trajectories and developing interventions aimed at preventing and delaying the progression of multimorbidity with aging. Here, a transcriptomic changes analysis of whole blood genes with age was conducted. The age-related whole blood gene-expression profiling datasets were downloaded from the Gene Expression Omnibus (GEO) database. We screened the differentially expressed genes (DEGs) between healthy young and old individuals and performed functional enrichment analysis. Cytoscape with Cytohubba and MCODE was used to perform an interaction network of DEGs and identify hub genes. In addition, ROC curves and correlation analysis were used to evaluate the accuracy of hub genes. In total, we identified 29 DEGs between young and old samples that were enriched mainly in immunoglobulin binding and complex, humoral immune response, and immune response-activating signaling pathways. In combination with the PPI network and topological analysis, 4 hub genes (IGLL5, Jchain, POU2AF1, and Bach2) were identified. Pearson analysis showed that the expression changes of these hub genes were highly correlated with age. Among them, 3 hub genes (IGLL5, POU2AF1, and Bach2) were identified with good accuracy (AUC score > 0.7), indicating that these genes were the best indicators of age. Together, our results provided potential biomarkers IGLL5, POU2AF1, and Bach2 to identify individuals at high early risk of age-related disease to be targeted for early interventions and contribute to understanding the molecular mechanisms in the progression of aging.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3