Robot-assisted anterior transpedicular screw fixation with 3D printed implant for multiple cervical fractures: A case report

Author:

Pei Lei1,Yuan Wei1,Liu Xinchun1,Cong Lin1,Zhu Yue1

Affiliation:

1. Department of Orthopedics, First Hospital of China Medical University, Shenyang, China.

Abstract

Rationale: The anterior transpedicular screw (ATPS) fixation in the cervical spine provides the advantages of both anterior and posterior cervical surgery; however, it poses a high risk of screw insertion. In addition, a 3D printed implant can match ATPS fixation and reconstruction of the vertebral body. Robot-assisted surgery can make this process easier and potentially improve the safety and accuracy of the procedure. Patient concerns: A 64-year-old female was hit by a heavy object 4 days before presentation to our hospital. The patient exhibited a muscle strength of 0/5 in both the lower limbs and 3/5 in both the upper limbs. The visual analogue scale (VAS) for the neck was 5 points. Computed tomography (CT) of the cervical spine identified a burst fracture of the C5 vertebral body, and longitudinal splitting fracture of the C6 and C7 vertebral bodies accompanied with a split in the lamina. Magnetic resonance imaging (MRI) revealed a spinal cord edema from the C3 to the C7 level. Diagnosis: Multiple cervical fractures with spinal cord injury. Interventions: Anterior C4-5 and C5-6 disc resection, C5 corpectomy, robot-assisted ATPS fixation with the 3-D printed implant was performed. Outcomes: The CT scans revealed a satisfactory location of the internal implantation without any signs of complications associated with implantations. Six months later, the muscle strength of both the upper limbs increased from level 3 to level 5, VAS of neck decreased from 5 to 0. Lessons: Robot-assisted ATPS internal fixation combined with custom implantation surgery using a 3D printed vertebral body provides an important solution to solve special cases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3