Deep learning-based spinal canal segmentation of computed tomography image for disease diagnosis: A proposed system for spinal stenosis diagnosis

Author:

Zhou Zhiyi1,Wang Shenjun1,Zhang Shujun1,Pan Xiang2,Yang Haoxia1,Zhuang Yin1,Lu Zhengfeng1ORCID

Affiliation:

1. Department of Orthopaedics, Wuxi The Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China

2. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China.

Abstract

Background: Lumbar disc herniation was regarded as an age-related degenerative disease. Nevertheless, emerging reports highlight a discernible shift, illustrating the prevalence of these conditions among younger individuals. Methods: This study introduces a novel deep learning methodology tailored for spinal canal segmentation and disease diagnosis, emphasizing image processing techniques that delve into essential image attributes such as gray levels, texture, and statistical structures to refine segmentation accuracy. Results: Analysis reveals a progressive increase in the size of vertebrae and intervertebral discs from the cervical to lumbar regions. Vertebrae, bearing weight and safeguarding the spinal cord and nerves, are interconnected by intervertebral discs, resilient structures that counteract spinal pressure. Experimental findings demonstrate a lack of pronounced anteroposterior bending during flexion and extension, maintaining displacement and rotation angles consistently approximating zero. This consistency maintains uniform anterior and posterior vertebrae heights, coupled with parallel intervertebral disc heights, aligning with theoretical expectations. Conclusions: Accuracy assessment employs 2 methods: IoU and Dice, and the average accuracy of IoU is 88% and that of Dice is 96.4%. The proposed deep learning-based system showcases promising results in spinal canal segmentation, laying a foundation for precise stenosis diagnosis in computed tomography images. This contributes significantly to advancements in spinal pathology understanding and treatment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3