Hypoxia-derived molecular subtype and gene signature characterize prognoses and therapeutic responses in head and neck squamous cell carcinoma

Author:

Zou Jianjun1ORCID,Chu Shidong1,Zhou Huaien1,Zhang Yiyun1

Affiliation:

1. Department of Otolaryngology, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine), Hangzhou, Zhejiang, China.

Abstract

Intratumoral hypoxia is widely associated with the development of malignancy, treatment resistance, and worse prognoses. This study aims to investigate the role of hypoxia-related genes (HRG) in the immune landscape, treatment response, and prognosis of head and neck squamous cell carcinoma (HNSCC). The transcriptome and clinical data of HNSCC were downloaded from TCGA and GEO databases, and HNSCC molecular subtypes were identified using non-negative matrix factorization (NMF) clustering. Prognostic models were constructed using univariate, Lasso, and multivariate Cox regression analyses. The relationship between HRGs and immune cell infiltration, immune therapy response, and drug sensitivity was evaluated, and a nomogram was constructed. 47 HRGs were differentially expressed in HNSCC, among which 10 genes were significantly associated with HNSCC prognosis. Based on these 10 genes, 2 HNSCC molecular subtypes were identified, which showed significant heterogeneity in terms of prognosis, immune infiltration, and treatment response. A total of 3280 differentially expressed genes were identified between the subtypes. After univariate, Lasso, and multivariate Cox regression analysis, 18 genes were selected to construct a novel prognostic model, which showed a significant correlation with B cells, T cells, and macrophages. Using this model, HNSCC was classified into high-risk and low-risk groups, which exhibited significant differences in terms of prognosis, immune cell infiltration, immune therapy response, and drug sensitivity. Finally, a nomogram based on this model and radiotherapy was constructed, which showed good performance in predicting HNSCC prognosis and guiding personalized treatment strategies. The decision curve analysis demonstrated its better clinical applicability compared to other strategies. HRGs can identify 2 HNSCC molecular subtypes with significant heterogeneity, and the HRG-derived risk model has the potential for prognostic prediction and guiding personalized treatment strategies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3