Exploring the mechanism of Tingli Pill in the treatment of HFpEF based on network pharmacology and molecular docking

Author:

Chi Kuo1,Yang Saisai1,Zhang Yao1,Zhao Yongfa2,Zhao Jiahe3,Chen Qiuhan1,Ge Yuan4,Liu Jing1ORCID

Affiliation:

1. Heilongjiang University of Chinese Medicine, Harbin, China

2. The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China

3. Medical Comprehensive Experimental Center, Hebei University, Baoding, China

4. The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.

Abstract

To explore the mechanism of action of Tingli Pill (TLP) in the treatment of heart failure with preserved ejection fraction (HFpEF) by using network pharmacology and molecular docking technology. The active components and targets of TLP were screened using the TCMSP and UniProt databases. HFpEF-related targets were identified using the OMIM and GeneCards databases. Drug-disease intersection targets were obtained via Venny 2.1.0, as well as establishing the “component-target” network and screening out the core active components. Construct a protein–protein interaction network of intersecting targets using the STRING database as well as Cytoscape software and filter the core targets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of core targets were performed using the Metascape database. The core active components of TLP for HFpEF were quercetin, kaempferol, β-sitosterol, isorhamnetin and hederagenin. The core targets of TLP for HFpEF were JUN, MAPK1, TP53, AKT1, RELA, TNF, MAPK14, and IL16. Gene ontology enrichment analysis obtained 1528 biological processes, 85 cell components, and 140 molecular functions. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis yielded 1940 signaling pathways, mainly involved in lipid and atherosclerosis, regulation of apoptotic signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, oxidative stress, TNF signaling pathway, and IL-17 signaling pathway. TLP has the characteristics of multi-component, multi-target, and multi-pathway in the treatment of HFpEF. This study lays the foundation for revealing the pharmacodynamic substances and mechanism of TLP in the treatment of HFpEF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3