Intelligent diagnosis of lung nodule images based on machine learning in the context of lung teaching

Author:

Li Miaomiao1,Zhuang Lilei2,Hu Sheng3,Sun Li1,Liu Yangxiang1,Dou Zhengwei1,Jiang Tao1

Affiliation:

1. Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, People’s Republic of China

2. Department of Gastroenterology, Yiwu Central Hospital, Yiwu, Zhejiang, People’s Republic of China

3. Department of Radiology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, People’s Republic of China.

Abstract

The vast majority of intelligent diagnosis models have widespread problems, which seriously affect the medical staff judgment of patients’ injuries. So depending on the situation, you need to use different algorithms, The study suggests a model for intelligent diagnosis of lung nodule images based on machine learning, and a support vector machine-based machine learning algorithm is selected. In order to improve the diagnostic accuracy of intelligent diagnosis of lung nodule images as well as the diagnostic model of lung nodule images. The objectives are broken down into algorithm determination and model construction, and the proposed optimized model is solved using machine learning techniques in order to achieve the original algorithm selected for intelligent diagnosis of lung nodule photos. The validation findings demonstrated that dimensionality reduction of the features produced 17 × 1120 and 17 × 2980 non-node matrices with 1216 nodes and 3407 non-nodes in 17 features. The support vector machine classification method has more benefits in terms of accuracy, sensitivity, and specificity when compared to other classification methods. Since there were some anomalies among both benign and malignant tumors and no discernible difference between them, the distribution of median values revealed that the data was symmetrical in terms of texture and gray scale. Non-small nodules can be identified from benign nodules, but more training is needed to separate them from the other 2 types. Pulmonary nodules are a common disease. MN are distinct from the other 2 types, non-small nodules and benign small nodules, which require further training to differentiate. This has great practical value in teaching practice. Therefore, building a machine learning-based intelligent diagnostic model for pulmonary nodules is of significant importance in helping to solve medical imaging diagnostic problems.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3