Affiliation:
1. Respiratory Department, The First People’s Hospital of Lanzhou City, Lanzhou, Gansu, China
2. Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Xinjiang, China
3. The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
4. Xinjiang Gem Flower Hospital, Xinjiang, China.
Abstract
Background:
Asthma ranks among the most prevalent non-communicable diseases worldwide. Previous studies have elucidated the significant role of the immune system in its pathophysiology. Nevertheless, the immune-related mechanisms underlying asthma are complex and still inadequately understood. Thus, our objective was to investigate novel key biomarkers and immune infiltration characteristics associated with asthma by employing integrated bioinformatics tools.
Methods:
In this study, we conducted a weighted gene co-expression network analysis (WGCNA) to identify key modules and genes potentially implicated in asthma. Functional annotation of these key modules and genes was carried out through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Additionally, we constructed a protein–protein interaction (PPI) network using the STRING database to identify 10 hub genes. Furthermore, we evaluated the relative proportion of immune cells in bronchial epithelial cell samples from 20 healthy individuals and 88 asthmatic patients using CIBERSORT. Finally, we validated the hub genes and explored their correlation with immune infiltration.
Results:
Furthermore, 20 gene expression modules and 10 hub genes were identified herein. Among them, complement component 3 (C3), prostaglandin I2 receptor (PTGIR), parathyroid hormone-like hormone (PTHLH), and C-X3-C motif chemokine ligand 1 (CX3CL1) were closely correlated with the infiltration of immune cells. They may be novel candidate biomarkers or therapeutic targets for asthma. Furthermore, B cells memory, and plasma cells might play an important role in immune cell infiltration after asthma.
Conclusions:
C3, PTGIR, CX3CL1, and PTHLH have important clinical diagnostic values and are correlated with infiltration of multiple immune cell types in asthma. These hub genes, B cells memory, and plasma cells may become important biological targets for therapeutic asthma drug screening and drug design.
Publisher
Ovid Technologies (Wolters Kluwer Health)