A novel mutation in the ATP7B gene causing hepatolenticular degeneration in a Chinese family: A case report

Author:

Zhou Zhibo1,Zhang Sainan1,Bi Yunjiao2,Duan Wenyuan3,Gao Hainv1ORCID

Affiliation:

1. Department of Infectious Diseases, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P. R. China

2. Zhejiang Chinese Medical University, Hangzhou, P. R. China

3. Department of Precision Medicine Testing Center, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P. R. China.

Abstract

Introduction: Hepatolenticular degeneration (Wilson disease) is an autosomal recessive monogenic disorder caused by mutations in the ATPase copper transporting beta (ATP7B) gene located on human chromosome 13. This gene encodes a copper-transporting P-type ATPase (ATP7B). Recent studies have revealed that the ATP7B gene is predominantly affected by a few hotspot mutations, with the His1069Gln mutation in exon 14 accounting for 50 to 80% of cases. In China, the Arg778Leu mutation in exon 8 is the most prevalent. However, the discovery of novel mutant genes persists. Case presentation: A 56-year-old Chinese female was referred to our hospital with a liver injury and cirrhosis. Her parents, 2 younger brothers, and children exhibited no signs of liver function impairment. Whole-exome sequencing was conducted on the proband’s genomic DNA, and Sanger sequencing was performed on 6 family members for first-generation verification. Conclusions: We identified a novel c.3715G > T (p.Val1239Phe) variant mutation in the ATP7B gene in the patient. The ATP7B c.3715G > T (p.Val1239Phe) variant is predicted to impact the copper transport P-type ATPase. When combined with another mutant gene to form a compound heterozygous mutation, it can lead to hepatolenticular degeneration. This discovery broadens the range of pathogenic genes in the ATP7B gene.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3