Systematic analysis of fatty acid desaturases in breast invasive carcinoma: The prognosis, gene mutation, and tumor immune microenvironment

Author:

Wang Jie1,Zhang Qian1,Zhou Duanrui1,Wang Yixuan1,Che Huilian1,Ge Yunjun1,Zhong Zhangfeng2,Wu Guosheng13ORCID

Affiliation:

1. Department of Basic Medical Science, Wuxi School of Medicine, Jiangnan University, Wuxi, China

2. Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China

3. Jiangnan University Medical Center, Wuxi, China.

Abstract

Breast invasive carcinoma (BRCA) is one of the most common cancers in women, with its malignant progression significantly influenced by intracellular fatty acid (FA) desaturation. Stearoyl-coenzyme A desaturase (SCD) and fatty acid desaturase 2 (FADS2) are two key rate-limiting enzymes that catalyze the FA desaturation process and cooperate to accelerate lipid metabolic activities. In this study, we investigated the potential functions of SCD and FADS2 in BRCA using bioinformatic analysis and experimental validation. The gene expression profiling interactive analysis database showed that the expression of SCD or FADS2 genes was positively linked to worse overall survival and disease-free survival in the Cancer Genome Atlas database-BRCA. The University of Alabama at Birmingham cancer data analysis portal database indicates that the expression and methylation levels of SCD or FADS2 are associated with various clinicopathological factors in patients with BRCA. Moreover, the tumor immune estimation resource and TISCH databases showed a significant positive correlation between the expression of SCD and the abundance of CD8+ T cells and macrophage cell infiltration, while the expression of FADS2 was positively correlated with the abundance of B cells. Meanwhile, SCD or FADS2 had a higher expression in monocytes/macrophages analyzed the BRCA_GSE143423 and BRCA_GSE114727_inDrop datasets. Mechanistically, the Search Tool for the Retrieval of Distant Genes and CancerSEA databases showed that SCD and FADS2 were upregulated in several cell biology signaling pathways, particularly in inflammation, apoptosis, and DNA repair. Finally, SCD or FADS2 knockdown inhibited the proliferation of MCF-7 and MDA-MB-231 cells. In summary, SCD and FADS2 play significant roles in BRCA development, suggesting that they may serve as potential therapeutic targets for BRCA treatment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3