Detection and assessment of immune and stromal related risk genes to predict preeclampsia: A bioinformatics analysis with dataset

Author:

Qin Hong1

Affiliation:

1. Obstetrics Department, Longhua District Maternal and Child Health Care Hospital, Shenzhen, China.

Abstract

This study aimed to investigate immune score and stromal score-related signatures associated with preeclampsia (PE) and identify key genes for diagnosing PE using bioinformatics analysis. Four microarray datasets, GSE75010, GSE25906, GSE44711, and GSE10588 were obtained from the Gene Expression Omnibus database. GSE75010 was utilized for differential expressed gene (DEGs) analysis. Subsequently, bioinformatic tools such as gene ontology, Kyoto Encyclopedia of Genes and Genomes, weighted gene correlation network analysis, and gene set enrichment analysis were employed to functionally characterize candidate target genes involved in the pathogenesis of PE. The least absolute shrinkage and selection operator regression approach was employed to identify crucial genes and develop a predictive model. This method also facilitated the creation of receiver operating characteristic (ROC) curves, enabling the evaluation of the model’s precision. Furthermore, the model underwent external validation through the other three datasets. A total of 3286 DEGs were identified between normal and PE tissues. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed enrichments in functions related to cell chemotaxis, cytokine binding, and cytokine–cytokine receptor interaction. weighted gene correlation network analysis identified 2 color modules strongly correlated with immune and stromal scores. After intersecting DEGs with immune and stromal-related genes, 13 genes were selected and added to the least absolute shrinkage and selection operator regression. Ultimately, 7 genes were screened out to establish the risk model for discriminating preeclampsia from controls, with each gene having an area under the ROC curve >0.70. The constructed risk model demonstrated that the area under the ROC curves in internal and the other three external datasets were all greater than 0.80. A 7-gene risk signature was identified to build a potential diagnostic model and performed well in the external validation group for PE patients. These findings illustrated that immune and stromal cells played essential roles in PE during its progression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3