Potential mechanisms of traditional Chinese medicine in treating insomnia: A network pharmacology, GEO validation, and molecular-docking study

Author:

Liu Xing12ORCID,Sun Pengcheng12,Bao Xuejie12,Cao Yanqi12,Wang Liying12,Wang Qi2

Affiliation:

1. College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China

2. National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.

Abstract

The purpose of this study is to investigate the potential mechanisms of Chinese herbs for the treatment of insomnia using a combination of data mining, network pharmacology, and molecular-docking validation. All the prescriptions for insomnia treated by the academician Qi Wang from 2020 to 2022 were collected. The Ancient and Modern Medical Case Cloud Platform v2.3 was used to identify high-frequency Chinese medicinal herbs and the core prescription. The Traditional Chinese Medicine Systems Pharmacology and UniProt databases were utilized to predict the effective active components and targets of the core herbs. Insomnia-related targets were collected from 4 databases. The intersecting targets were utilized to build a protein–protein interaction network and conduct gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis using the STRING database, Cytoscape software, and clusterProfiler package. Gene chip data (GSE208668) were obtained from the Gene Expression Omnibus database. The limma package was applied to identify differentially expressed genes (DEGs) between insomnia patients and healthy controls. To create a “transcription factor (TF)-miRNA-mRNA” network, the differentially expressed miRNAs were entered into the TransmiR, FunRich, Targetscan, and miRDB databases. Subsequently, the overlapping targets were validated using the DEGs, and further validations were conducted through molecular docking and molecular dynamics simulations. Among the 117 prescriptions, 65 herbs and a core prescription were identified. Network pharmacology and bioinformatics analysis revealed that active components such as β-sitosterol, stigmasterol, and canadine acted on hub targets, including interleukin-6, caspase-3, and hypoxia-inducible factor-1α. In GSE208668, 6417 DEGs and 7 differentially expressed miRNAs were identified. A “TF-miRNA-mRNA” network was constructed by 4 “TF-miRNA” interaction pairs and 66 “miRNA-mRNA” interaction pairs. Downstream mRNAs exert therapeutic effects on insomnia by regulating circadian rhythm. Molecular-docking analyses demonstrated good docking between core components and hub targets. Molecular dynamics simulation displayed the strong stability of the complex formed by small molecule and target. The core prescription by the academician Qi Wang for treating insomnia, which involves multiple components, targets, and pathways, showed the potential to improve sleep, providing a basis for clinical treatment of insomnia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference81 articles.

1. Diagnostic and statistical manual of mental disorders (DSM-IV-TR);,2000

2. Insomnia: prevalence, impact, pathogenesis, differential diagnosis, and evaluation.;Mai;Sleep Med Clin,2008

3. Sleep disturbances as an evidence-based suicide risk factor.;Bernert;Curr Psychiatry Rep,2015

4. Sex differences in insomnia: from epidemiology and etiology to intervention.;Suh;Curr Psychiatry Rep,2018

5. Insomnia disorder: state of the science and challenges for the future.;Riemann;J Sleep Res,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3