Longitudinal Changes of CT-radiomic and Systemic Inflammatory Features Predict Survival in Advanced Non–Small Cell Lung Cancer Patients Treated With Immune Checkpoint Inhibitors

Author:

Balbi Maurizio12,Mazzaschi Giulia32,Leo Ludovica2,Moron Dalla Tor Lucas2,Milanese Gianluca12,Marrocchio Cristina12,Silva Mario12,Mura Rebecca12,Favia Pasquale12,Bocchialini Giovanni4,Trentini Francesca32,Minari Roberta3,Ampollini Luca42,Quaini Federico2,Roti Giovanni52,Tiseo Marcello32,Sverzellati Nicola12

Affiliation:

1. Unit of Scienze Radiologiche

2. Department of Medicine and Surgery, University of Parma, Parma, Italy

3. Medical Oncology Unit

4. Thoracic Surgery Unit, University Hospital of Parma

5. Translational Hematology Unit

Abstract

Purpose: This study aims to determine whether longitudinal changes in CT radiomic features (RFs) and systemic inflammatory indices outperform single-time-point assessment in predicting survival in advanced non–small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). Materials and Methods: We retrospectively acquired pretreatment (T0) and first disease assessment (T1) RFs and systemic inflammatory indices from a single-center cohort of stage IV NSCLC patients and computed their delta (Δ) variation as [(T1-T0)/T0]. RFs from the primary tumor were selected for building baseline-radiomic (RAD) and Δ-RAD scores using the linear combination of standardized predictors detected by LASSO Cox regression models. Cox models were generated using clinical features alone or combined with baseline and Δ blood parameters and integrated with baseline-RAD and Δ-RAD. All models were 3-fold cross-validated. A prognostic index (PI) of each model was tested to stratify overall survival (OS) through Kaplan-Meier analysis. Results: We included 90 ICI-treated NSCLC patients (median age 70 y [IQR=42 to 85], 63 males). Δ-RAD outperformed baseline-RAD for predicting OS [c-index: 0.632 (95%CI: 0.628 to 0.636) vs. 0.605 (95%CI: 0.601 to 0.608) in the test splits]. Integrating longitudinal changes of systemic inflammatory indices and Δ-RAD with clinical data led to the best model performance [Integrated-Δ model, c-index: 0.750 (95% CI: 0.749 to 0.751) in training and 0.718 (95% CI: 0.715 to 0.721) in testing splits]. PI enabled significant OS stratification within all the models (P-value <0.01), reaching the greatest discriminative ability in Δ models (high-risk group HR up to 7.37, 95% CI: 3.9 to 13.94, P<0.01). Conclusion: Δ-RAD improved OS prediction compared with single-time-point radiomic in advanced ICI-treated NSCLC. Integrating Δ-RAD with a longitudinal assessment of clinical and laboratory data further improved the prognostic performance.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3