Role of Quantitative Plaque Analysis and Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography to Assess Plaque Progression

Author:

Qiao Hong Yan1,Wu Yong1,Li Hai Cheng2,Zhang Hai Yan2,Wu Qing Hua1,You Qing Jun3,Ma Xin4,Hu Shu Dong1

Affiliation:

1. Medical Imaging

2. Department of Medical Imaging, Minhe County People’s Hospital, Haidong, Qing hai, China

3. Thoracic Surgery, Affiliated Hospital of Jiangnan University

4. School of Medicine, Jiangnan University, Wuxi, Jiangsu

Abstract

Purpose: To explore the role of quantitative plaque analysis and fractional flow reserve (CT-FFR) derived from coronary computed angiography (CCTA) in evaluating plaque progression (PP). Methods: A total of 248 consecutive patients who underwent serial CCTA examinations were enrolled. All patients’ images were analyzed quantitatively by plaque analysis software. The quantitative analysis indexes included diameter stenosis (%DS), plaque length, plaque volume (PV), calcified PV, noncalcified PV, minimum lumen area (MLA), and remodeling index (RI). PP is defined as PAV (percentage atheroma volume) change rate >1%. CT-FFR analysis was performed using the cFFR software. Results: A total of 76 patients (30.6%) and 172 patients (69.4%) were included in the PP group and non-PP group, respectively. Compared with the non-PP group, the PP group showed greater %DS, smaller MLA, larger PV and non-calcified PV, larger RI, and lower CT-FFR on baseline CCTA (all P<0.05). Logistic regression analysis showed that RI≥1.10 (odds ratio [OR]: 2.709, 95% CI: 1.447-5.072), and CT-FFR≤0.85 (OR: 5.079, 95% CI: 2.626-9.283) were independent predictors of PP. The model based on %DS, quantitative plaque features, and CT-FFR (area under the receiver-operating characteristics curve [AUC]=0.80, P<0.001) was significantly better than that based rarely on %DS (AUC=0.61, P=0.007) and that based on %DS and quantitative plaque characteristics (AUC=0.72, P<0.001). Conclusions: Quantitative plaque analysis and CT-FFR are helpful to identify PP. RI and CT-FFR are important predictors of PP. Compared with the prediction model only depending on %DS, plaque quantitative markers and CT-FFR can further improve the predictive performance of PP.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Pulmonary and Respiratory Medicine,Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3