Direct Visualization of Trapped Erythrocytes in Rat Brain after Focal Ischemia and Reperfusion

Author:

Liu Shimin1,Connor John2,Peterson Steven1,Shuttleworth C. William2,Liu Ke Jian1

Affiliation:

1. College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, U.S.A.

2. Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, U.S.A.

Abstract

Partial microcirculatory stasis after cerebral ischemia and reperfusion is a potential factor in delayed cell death. Sometimes described as the “no-reflow” phenomenon, limitations in current detection techniques have left the extent and spatial distribution of the phenomenon undetermined, which has led to some doubt as to its actual existence. The authors describe a new method, based on erythrocyte autofluorescence, that allows the erythrocytes trapped in the microvasculature, and thus blocking recirculation, to be directly visualized. Using this method, the authors have examined the spatial and temporal characteristics of this phenomenon in the rat intraluminal model of cerebral ischemia and reperfusion. Up to 15% of the capillaries in the ischemic penumbra remained occluded at least 2 hours after reperfusion. The amount of capillary bed showing trapped erythrocytes was more severe in the ischemic penumbra region than in the ischemic core. These results indicate that the no-reflow phenomenon may contribute to the developing damage in ischemic penumbra region, leading to additional injury after reperfusion.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3