Reduced Cerebral Injury in CRH-R1 Deficient Mice after Focal Ischemia: A Potential Link to Microglia and Atrocytes that Express CRH-R1

Author:

Stevens Susan L1,Shaw Tatyana E1,Dykhuizen Emily1,Lessov Nikola S2,Hill Jennifer K1,Wurst Wolfgang3,Stenzel-Poore Mary P1

Affiliation:

1. Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, U.S.A.

2. Department of Oregon Stroke Center, Oregon Health & Science University, Portland, Oregon, U.S.A.

3. Max Planck Institute of Psychiatry, GSF-Research Center for Environment and Health, Munich/Neuherberg, Germany.

Abstract

Corticotropin releasing hormone (CRH) and its family of related peptides are involved in regulating physiologic responses to multiple stressors, including stroke. Although CRH has been implicated in the exacerbation of injury after stroke, the mechanism remains unclear. After ischemia, both excitotoxic damage and inflammation contribute to the pathology of stroke. CRH is known to potentiate excitotoxic damage in the brain and has been shown to modulate inflammatory responses in the periphery. Here the present authors examine the relative contribution of the two known CRH receptors, CRH-R1 and CRH-R2, to ischemic injury using CRH receptor knockout mice. These results implicate CRH-R1 as the primary mediator of ischemic injury in this mouse model of stroke. In addition, the authors examine a potential role for CRH in inflammatory injury after stroke by identifying functional CRH receptors on astrocytes and microglia, which are cells that are known to be involved in brain inflammation. By single cell PCR, the authors show that microglia and astrocytes express mRNA for both CRH-R1 and CRH-R2. However, CRH-R1 is the primary mediator of cAMP accumulation in response to CRH peptides in these cells. The authors suggest that astrocytes and microglia are cellular targets of CRH, which could serve as a link between CRH and inflammatory responses in ischemic injury via CRH-R1.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3