Application of Artificial Intelligence in Precision Medicine for Diabetic Macular Edema

Author:

Li Longhui1,Zhang Weixing1,Tu Xueer1,Pang Jianyu1,Lai Iat Fan2,Jin Chenjin1,Cheung Carol Y.3,Lin Haotian145ORCID

Affiliation:

1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong

2. Kiang Wu hospital, Macau

3. Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong

4. Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, Hainan

5. Center for Precision Medicine and Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China

Abstract

Diabetic macular edema (DME) is the primary cause of central vision impairment in patients with diabetes and the leading cause of preventable blindness in working-age people. With the advent of optical coherence tomography and antivascular endothelial growth factor (anti-VEGF) therapy, the diagnosis, evaluation, and treatment of DME were greatly revolutionized in the last decade. However, there is tremendous heterogeneity among DME patients, and 30%–50% of DME patients do not respond well to anti-VEGF agents. In addition, there is no evidence-based and universally accepted administration regimen. The identification of DME patients not responding to anti-VEGF agents and the determination of the optimal administration interval are the 2 major challenges of DME, which are difficult to achieve with the coarse granularity of conventional health care modality. Therefore, more and more retina specialists have pointed out the necessity of introducing precision medicine into the management of DME and have conducted related studies in recent years. One of the most frontier methods is the targeted extraction of individualized disease features from optical coherence tomography images based on artificial intelligence technology, which provides precise evaluation and risk classification of DME. This review aims to provide an overview of the progress of artificial intelligence-enabled precision medicine in automated screening, precise evaluation, prognosis prediction, and follow-up monitoring of DME. Further, the challenges ahead of real-world applications and the future development of precision medicine in DME will be discussed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Ophthalmology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3