The Effect of Knee Height Asymmetry on Gait Biomechanics

Author:

Altiok Haluk1,Burnham Robert1,Simon Jacqueline C.2,Flanagan Ann1,Kawaiah Abdal1,Sienko Susan3,Buckon Cathleen3,Bauer Jeremy P.3,Kruger Karen M.12,Krzak Joseph J.14

Affiliation:

1. Shriners Children’s, Gerald F. Harris Motion Analysis Center, Chicago, IL

2. Marquette University, Biomedical Engineering, Milwaukee, WI

3. Shriners Children’s Clinical Research, Portland, OR

4. Midwestern University, Physical Therapy Program, Downers Grove, IL

Abstract

Background: Though the primary goal for limb length discrepancy (LLD) management is to equalize the leg lengths, symmetry between corresponding long bones is usually not achieved, leading to knee height asymmetry (KHA). To date, there is minimal information on what effect KHA has on gait biomechanics and joint loading. Thus, the purpose of this study is to determine the impact of KHA on gait biomechanics. Methods: Seventeen subjects with KHA after limb equalizing surgery and 10 healthy controls were enrolled. Subjects participated in 3D gait analysis collected using self-selected speed. Lower extremity kinematics, kinetics, work generated/absorbed, and total work were calculated. Standing lower limb x-rays and scanograms were used to measure LLD and calculate the tibia-to-femur (TF) ratio for each limb. Two sample t tests were used to compare differences in standing LLD, TF ratio, and work between groups. Bivariate correlation using Pearson correlation coefficients was conducted between TF ratio and total mechanical work, as well as between knee height asymmetry indices and total work asymmetry (α=0.05). Results: Among participants, there were no differences between LLD; however, there were differences between TF ratio and knee height asymmetry. We found a nonsignificant relationship between TF ratio and total mechanical work for individual lower extremities. Therefore, the length of individual bones (TF ratio) relative to each other within the individual lower extremity was not associated with the amount of work produced. However, when a difference exists between sides (asymmetry, ie, TF ratio asymmetry), there were associated differences in work (work asymmetry) produced between sides (r=0.54, P=0.003). In other words, greater knee height asymmetry between limbs resulted in more asymmetrical mechanical work during walking. Conclusions: These findings may have implications for the management of LLD. Asymmetrical total mechanical work could lead to atypical joint loading during gait. Surgeons may want to consider prioritizing achieving knee height symmetry as a postoperative goal when correcting limb length discrepancy. Level of Evidence: Level III, Case Control Study.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3