Automated Calculator for the Pediatric Sequential Organ Failure Assessment Score: Development and External Validation in a Single-Center 7-Year Cohort, 2015–2021

Author:

Akhondi-Asl Alireza,Luchette Matthew,Mehta Nilesh M.,Geva Alon

Abstract

OBJECTIVES: The pediatric Sequential Organ Failure Assessment (pSOFA) score summarizes severity of organ dysfunction and can be used to predict in-hospital mortality. Manual calculation of the pSOFA score is time-consuming and prone to human error. An automated method that is open-source, flexible, and scalable for calculating the pSOFA score directly from electronic health record data is desirable. DESIGN: Single-center, retrospective cohort study. SETTING: Quaternary 40-bed PICU. PATIENTS: All patients admitted to the PICU between 2015 and 2021 with ICU stay of at least 24 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We used 77 records to evaluate the automated score. The automated algorithm had an overall accuracy of 97%. The algorithm calculated the respiratory component of two cases incorrectly. An expert human annotator had an initial accuracy of 75% at the patient level and 95% at the component level. An untrained human annotator with general clinical research experience had an overall accuracy of 16% and component-wise accuracy of 67%. Weighted kappa for agreement between the automated method and the expert annotator’s initial score was 0.92 (95% CI, 0.88–0.95), and between the untrained human annotator and the automated score was 0.50 (95% CI, 0.36–0.61). Data from 9146 patients (in-hospital mortality 3.6%) were included to validate externally the discriminability of the automated pSOFA score. The admission-day pSOFA score had an area under the receiver operating characteristic curve of 0.79 (95% CI, 0.77–0.82). CONCLUSIONS: The developed automated algorithm calculates pSOFA score with high accuracy and is more accurate than a trained expert rater and nontrained data abstracter. pSOFA’s performance for predicting in-hospital mortality was lower in our cohort than it was for the originally derived score.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editor’s Choice Articles for May;Pediatric Critical Care Medicine;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3