Diabetes and associated cardiovascular complications: The role of microRNAs

Author:

Macvanin Mirjana T.1,Isenovic Esma R.1

Affiliation:

1. Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Abstract

Diabetes mellitus (DM) refers to a complex cluster of metabolic disorders characterized by hyperglycemia caused by inadequate insulin secretion, insulin resistance, or excessive glucagon secretion. If not correctly treated, the prolonged effects of DM-associated metabolic perturbations lead to systemic vascular complications and cardiovascular disease (CVD), the principal cause of mortality among patients with DM. Given the increase in the global prevalence of diabetes, novel diagnostic and therapeutic procedures are necessary for its effective identification and treatment. Recent findings point to an important role of microRNA (miRNAs) in DM initiation and progression, as well as the occurrence of associated cardiovascular complications. miRNAs are short, highly conserved, single-stranded, non-coding RNAs that contribute to the maintenance of physiological homeostasis through the regulation of crucial processes such as metabolism, cell proliferation, and apoptosis. The increased availability of high-throughput methodologies for identifying and characterizing non-coding RNAs has led to considerable interest in miRNAs as potential biomarkers and therapeutic agents for DM. In this review, we first comprehensively detail the regulatory miRNAs involved in the pathophysiology of DM and diabetic cardiomyopathy (DCMP). Subsequently, we summarize findings regarding the utility of several of these miRNAs as potential prognostic and diagnostic biomarkers for DM and DM-associated CVD. Finally, we evaluate the potential of miRNA-based therapeutic approaches for treating DM and DCMP in the clinical setting.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3