Intestinal IL-33 promotes microbiota-derived trimethylamine N-oxide synthesis and drives metabolic dysfunction–associated steatotic liver disease progression by exerting dual regulation on HIF-1α

Author:

Hai Suping1ORCID,Li Xitang1,Xie Erliang1,Wu Wenhui1ORCID,Gao Qiang1,Yu Binghui1,Hu Junjian1,Xu Feiyang1,Zheng Xizhe1,Zhang Bin-hao2,Wu Di1,Yan Weiming1,Ning Qin1ORCID,Wang Xiaojing1ORCID

Affiliation:

1. Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China

2. Department of Surgery, Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Abstract

Background and Aims: Gut microbiota plays a prominent role in the pathogenesis of metabolic dysfunction–associated steatotic liver disease (MASLD). IL-33 is highly expressed at mucosal barrier sites and regulates intestinal homeostasis. Herein, we aimed to investigate the role and mechanism of intestinal IL-33 in MASLD. Approach and Results: In both humans and mice with MASLD, hepatic expression of IL-33 and its receptor suppression of tumorigenicity 2 (ST2) showed no significant change compared to controls, while serum soluble ST2 levels in humans, as well as intestinal IL-33 and ST2 expression in mice were significantly increased in MASLD. Deletion of global or intestinal IL-33 in mice alleviated metabolic disorders, inflammation, and fibrosis associated with MASLD by reducing intestinal barrier permeability and rectifying gut microbiota dysbiosis. Transplantation of gut microbiota from IL-33 deficiency mice prevented MASLD progression in wild-type mice. Moreover, IL-33 deficiency resulted in a decrease in the abundance of trimethylamine N-oxide–producing bacteria. Inhibition of trimethylamine N-oxide synthesis by 3,3-dimethyl-1-butanol mitigated hepatic oxidative stress in mice with MASLD. Nuclear IL-33 bound to hypoxia-inducible factor-1α and suppressed its activation, directly damaging the integrity of the intestinal barrier. Extracellular IL-33 destroyed the balance of intestinal Th1/Th17 and facilitated Th1 differentiation through the ST2-Hif1a-Tbx21 axis. Knockout of ST2 resulted in a diminished MASLD phenotype resembling that observed in IL-33 deficiency mice. Conclusions: Intestinal IL-33 enhanced gut microbiota–derived trimethylamine N-oxide synthesis and aggravated MASLD progression through dual regulation on hypoxia-inducible factor-1α. Targeting IL-33 and its associated microbiota may provide a potential therapeutic strategy for managing MASLD.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3