SLC10A5 deficiency causes hypercholanemia

Author:

Xu Yuqing12ORCID,Qian Yeqing12ORCID,Yu Ying1ORCID,Zhan Xin3ORCID,Jin Pengzhen12ORCID,Hong Jiawei12ORCID,Dong Minyue12ORCID

Affiliation:

1. Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China

2. Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China

3. Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China

Abstract

Background and Aims: Solute Carrier Family 10 Member 5 (SLC10A5) is a member of SLC10, comprising transporters of bile acids, steroidal hormones, and other substrates, but its function remains unclear. The aim of the current investigation was to clarify its function in the metabolism of bile acid and hypercholanemia. Approach and Results: Whole-exome sequencing and Sanger sequencing were used to identify and confirm the variant in the subjects of hypercholanemia. CRISPR/Cas9-mediated genome engineering was used to establish the knockout and point mutation mice. Primary mouse hepatocytes were isolated, and cell lines were cultured. SLC10A5 was silenced by siRNA and overexpressed by wild-type and mutant plasmids. The fluorescent bile acid derivative was used for the bile acid uptake assay. Bile acids were assessed with ultra-performance liquid chromatography tandem mass spectrometry. A heterozygous variant SLC10A5: c.994_995del (p.D332X) was identified in subjects with elevated total bile acid or altered bile acid profiles. Bile acids were increased in the serum and liver of knockout and point mutation mice. The expressions of FXR and SHP, regulators involved in the negative feedback of bile acid synthesis, were downregulated, while the bile acid synthesis genes CYP7A1 and CYP8B1 were upregulated in both gene-edited mice. Both the wild and mutant SLC10A5 proteins were localized on the plasma membrane. Knockdown, knockout, or targeted mutation of SLC10A5 led to the inhibition of bile acid uptake by cell lines and primary mouse hepatocytes. Conclusion: SLC10A5 is involved in the uptake of bile acid, and its deficiency causes hypercholanemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3