Radiation Therapy and the Microbiome; More Than a Gut Feeling

Author:

Amit Uri,Facciabene Andrea,Ben-Josef Edgar1

Affiliation:

1. Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA

Abstract

Abstract It is increasingly recognized that heterogeneities in tumor response and severity of adverse effects in irradiated patients can be attributed to the tumor microenvironment and host-related factors. Among the latter, a growing body of literature in recent years has demonstrated the role of the patient's microbiome in modulating both tumor and normal tissue response to radiotherapy (RT). Upon contact with the environment after birth, the infant's gastrointestinal tract is rapidly colonized by microbiota, which is low in diversity and predominantly characterized by 2 dominant species, Actinobacteria and Proteobacteria. With time, intestinal microbiota diversity increases, and colonization of Firmicutes and Bacteroidetes becomes dominant. By the time a child reaches 3 years, the gut microbiota composition has been reshaped and is relatively similar to that of an adult. The microbiome colonizing the different body organs comprises various species and abundances, which may impact human health. Although the adult microbiome composition is thought to remain stable in health, microbiome diversity and composition respond to different environmental and pathological conditions, including pharmaceutical interventions and RT. Our review focuses on how the gut microbiota modulates normal tissue toxicity and tumor control. Readers who want to learn more about how RT shapes gut microbiome diversity and composition are referred to several excellent recently published reviews.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cancer Research,Oncology

Reference67 articles.

1. Radiation enteropathy—pathogenesis, treatment and prevention;Nat Rev Gastroenterol Hepatol,2014

2. Inflammation and immunity in radiation damage to the gut mucosa;Biomed Res Int,2013

3. Effects of accelerated fractionation on radiation injury of the small intestine: a new rat model;Int J Radiat Oncol Biol Phys,1988

4. Radiation damage to the gastrointestinal tract: mechanisms, diagnosis, and management;Curr Opin Support Palliat Care,2007

5. Radiation-induced small bowel disease: latest developments and clinical guidance;Ther Adv Chronic Dis,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3