Lithofacial analysis and possibilities for prediction of properties on geophysical research and seismic exploration data by methods of machine learning

Author:

Kolbikova E. S.

Abstract

The success of a development strategy for any field depends on the degree of knowledge of the geological structure of its main reservoirs. As the area is drilled out, the concept of the structure of the hydrocarbon accumulation is refined, but in the case of a complex structure of the void space of the reservoirs and the lithological heterogeneity of the section over the area, geological uncertainties and risks during the subsequent placement of wells remain high. For these reasons, one of the main problems in hydrocarbon production is predicting rock types and the distribution of fluids throughout the reservoir away from wells, since the determination of rock properties is a major source of uncertainty in reservoir modeling studies [1, 2]. The proposed project will demonstrate algorithms based on machine learning methods that allow predicting the distribution of lithology and the uncertainty of lithofacies variability in the section.

Publisher

KMG Engineering

Reference6 articles.

1. Hami-Eddine K., Klein P., and Richard L. Well Facies-based supervised classification on prestack. – SEG Annual Meeting, Houston, Texas, October 2009.

2. Hami-Eddine K., Klein P., Richard L., de Ribet B. and Grout M., A new technique for lithology and fluid content prediction from prestack data: An application to a carbonate reservoir. – The 13th SEGJ International Symposium, Tokyo, Japan, April 2019.

3. Ye Shin-Ju, Rabiller P. A new tool for electrofacies analysis: Multi-Resolution Graph-Based Clustering. – 41st Annual Logging Symposium SPWLA, 2000.

4. Ye Shin-Ju, Rabiller P. Automated Electrofacies Ordering. – Petrophysics, 2005, v. 46, N 6.

5. Zhou Y., and Goldman S. Democratic co-learning. – 16th IEEE International Conference on Tools with Artificial Intelligence, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3