Increasing the efficiency of bactericide use when using seawater in a reservoir pressure maintenance system

Author:

Bidzhieva Salimat Kh.ORCID,Nurseitov Nauruzbek K.,Kalmukhanova Tilektes B.,Utepov Maksat S.

Abstract

Rationale: Since 2018, at the Uzen oilfield, in order to study and control the microbiological contamination with sulfate-reducing bacteria (hereinafter referred to as SRB) of oilfield environment, full-scale bactericidal treatment and monitoring of the effectiveness of reagent use have been carried out. At the equipped control points, water samples are taken for the content of SRB cells before and after injection of the bactericide. Target: Reduce the intensity of sulfidogenesis at the oilfield and, as a consequence, the concentration of hydrogen sulfide in the associated gas. Materials and methods: Since the applied technology of injecting the bactericide in shock dosages did not allow achieving a stable reduction in the concentration of hydrogen sulfide, it was replaced by the technology of constantly injecting the bactericide into seawater at a dosage of 40 mg/l in an experimental mode. This technology showed low efficiency, hydrogen sulfide (H2S) concentrations varied between 352–379 ppm, and the monthly consumption of the reagent increased by 40%. Based on the obtained data on ineffectiveness, the constant injection of bactericide at MPS-4 was stopped and a new technology for injection of bactericide was proposed, aimed at suppressing not only planktonic, but also adherent forms of SRB. Results: Results. Injection of the bactericide using the new technology showed significant efficiency, which was assessed by reducing the concentration of hydrogen sulfide in the associated gas by an average of 45% across the oilfield. Conclusion: The proposed new technology for injecting a bactericide made it possible to effectively suppress the activity of sulfidogenic microorganisms and reduce the level of biogenic hydrogen sulfide in the oilfield.

Publisher

KMG Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3