Application of microfluidics to optimize oil and gas field development technologies

Author:

Pereponov Dmitrii,Scerbacova Alexandra,Kazaku Vitaly,Hajiyev Murad,Tarkhov Michael A.,Shilov EvgenyORCID,Cheremisin Alexey

Abstract

To increase the oil recovery factor (RF), enhanced oil recovery (EOR) methods are applied: chemical, gas, thermal, and combined ones. Standard laboratory research methods for selecting and optimizing EOR technologies require a lot of time and resources, as well as core material, which is often in short supply. To optimize the selection of reagents and field development technologies, the use of microfluidic technology is proposed i.e. conducting experiments in reservoir conditions using microfluidic chips with a porous structure, reproducing the properties of the core of the target field. The main advantages of conducting tests in micromodels are the low duration and the ability to visualize filtration processes, which makes it possible to evaluate the behavior of fluids in reservoir conditions. This paper considers the modern application of microfluidics for the selection of EOR agents and stimulation methods and the status of this technology in the oil and gas industry. The use of microfluidic chips for screening surfactants and polymers, as well as studying the mechanism of low-mineralized water action is described. Conducting microfluidic tests to optimize gas and thermal EOR, which became possible due to the development and improvement of technology, is considered.

Publisher

KMG Engineering

Reference60 articles.

1. Status of surfactant EOR technology

2. Recovery rates, enhanced oil recovery and technological limits

3. Lake LW. Enhanced Oil Recovery. New York: Prentice Hall, Englewood Cliffs; 1989.

4. Screening Criteria and Considerations of Offshore Enhanced Oil Recovery

5. Pwaga S, Iluore C, Idrees MU, et al. Comparative Study of Different EOR Methods. Trondheim: NTNU; 2010.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3