Abstract
Background: This study is aimed at reducing liquid waste in the process of reverse osmotic demineralization of water using an electromagnetic treatment. A side effect of this is the deposition of salts on the reverse osmotic membranes used, which reduces their service life. This leads to a decrease in the performance of the equipment, and, respectively, the membranes used are subjected to further flushing or replacement. The article presents data on long-term tests conducted by Pavlodar Petrochemical Plant LLP on the effectiveness of electromagnetic treatment technology in the process of reverse osmotic purification of water vapor condensate to ensure a minimum volume of concentrate (brine) of no more than 10% and to prevent intensive salt deposition on reverse osmotic membranes.
Aim: Investigate the possibility of using an electromagnetic treatment device to extend the service life of reverse osmotic membranes during steam condensate purification of Pavlodar Petrochemical Plant LLP.
Materials and methods: For this study, "Termite" electronic hardness salt converter was used, which treats water with electromagnetic waves and not only prevents the formation of scale, but also removes the scale already present in the equipment.
Findings: After being treated with an electromagnetic treatment device in the reverse osmosis process, samples of treated water showed a decrease in total salt content to 1.26 mg/kg and iron content from 84 to 10 µg/dm³. At the same time, the water's pH virtually stayed the same. The specific electrical conductivity of steam condensate was found to be 5.0 microns/cm, which corresponds to a value that does not exceed the required standards.
Conclusion: Tests on steam condensate purification carried out by the Pavlodar Petrochemical Plant using pulsed electromagnetic treatment in the reverse osmosis process showed a positive result in reducing the total salt content, in particular iron, as well as water hardness.