Calculation of the characteristics of rock samples based on their images using deep machine learning algorithms

Author:

Assilbekov Bakytzhan K.ORCID,Kalzhanov Nurlykhan E.ORCID,Bekbau Bakbergen E.ORCID,Bolysbek Darezhat A.ORCID

Abstract

Porosity, absolute permeability and diffusion coefficient are important characteristics of the flow of fluids in the pore space of rocks, the determination of which is resource-intensive and time-consuming. With the development of deep machine learning methods over the past 3–4 years, artificial neural networks have begun to be actively used in determining the transport properties of the “liquid-porous medium” system and the geometric characteristics of the pore space of samples based on their images. This method allows you to quickly determine the desired properties with acceptable accuracy. Therefore, the question arises about the effectiveness and adequacy of deep machine learning methods for these purposes. This article provides a scientific review of open literature sources on the determination of absolute permeability, diffusion coefficient and porosity from images obtained by different scanning methods. We also used our own data, namely images for 4 carbonate samples, and presented the results of predicting the connected porosity of these samples based on their X-ray images using the convolutional neural network model we built. The review showed that images of rock samples obtained using various scanning methods make it possible to calculate their transport properties with high reliability in a significantly short time. This means that deep machine learning can be a good alternative tool for calculating the properties of rock samples based on their images. The model we built showed the predictive ability of the porosity of 3 carbonate samples with a reliability coefficient of 0.936–0.976.

Publisher

KMG Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3